设f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0 证明至少存在一点g∈(0,1)使得f’(g)=- 2f(g)/g
人气:352 ℃ 时间:2020-01-30 11:30:34
解答
令:F(x)=x^2*f(x)当x=0时,F(0)=0^2*f(0)=0当x=1时,F(1)=1^2*f(1)=0而且F(x)在[0,1]内连续,F(x)在(0,1)内可导故根据Rolle中值定理得:存在g∈(0,1),使得f'(g)=0而f'(x)=2xf(x)+x^2*f'(x)故有:2gf(g)+g^2*f'(g)=0且g...
推荐
- 设f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明存在一点ξ∈(0,1),使得2f(ξ)+ξf'(ξ)=0
- 设f(x)在[0,1]上连续,在(0,1)上可导,且f(1)=0.证明:至少存在一点§?(0,1),使得f'(§)=-2f (§)/...
- 设函数f(x)在【0,1】连续,在其开区间可导,且f(0)f(1)
- 设f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,试证明至少存在一点ζ∈(0,1),使f′(ζ)=-2f(ζ)/ζ
- 设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,证明:至少存在一点ξ∈(0,1),使得f′(ξ)+2f(ξ)=0.
- 95.0934精确到个位十分位百分位千分位依次是( )( )( )( );那37.9964和5.9898
- {3x+2y=5 {y=2x-1 这是二元一次方程组,
- 直角梯形ABCD中,角A=角B=90°,角C=45°,AB=6,AD=2,则底边BC=?梯形ABCD的面积为多少
猜你喜欢
- 若二次函数y=-x2+mx-1的图象与两端点为A(0,3),B(3,0)的线段AB有两个不同的交点,则m的取值范围是_.
- 已知lg2=0.3010,lg1.0718=0.0301,则2^1/10=?
- 并帮我分析一下其他的选项为什么错
- 高一英语,高手进,求解释原因!急急急,在线等
- 米芾学书这篇文章主要讲了一件什么事简单概括一下
- 一根轻质杠杆,在左右两端分别挂上200N和300N的重物时,杠杆恰巧平衡,若将两边重物同时减少50N,则杠杆
- 翻译none of the singers around the world can match her in special taste in haircuts and clothes
- 一个饲养场,养鸭1200只,(),养鸡多少只?补充问题!