设数列{an}前n项和为Sn,且(3-m)Sn+2man=m+3(n属于N*).其中m为实常数,m不等于-3且m不等于0.
1,求证:{an}是等比数列.
2,若数列{an}的公比满足q=f(m)且b1=a1,bn=3/2f(bn-1)(n属于N*,n大于等于2),求{bn}的通项公式.
3,若m=1时,设Tn=a1+2a2+3a3+...+nan(n属于N*),是否存在最大的正整数k,使得对任意n属于N*均有Tn大于k/8成立,若存在求出k的值,若不存在请说明理由.
人气:441 ℃ 时间:2020-06-12 15:36:54
解答
1.(3-m)Sn+2man=m+3 (1)当n=1时,求得a1=1当n=n-1时,(3-m)S(n-1)+2ma(n-1)=m+3 (2)第一式减去第二式得:(3-m)an+2m(an-a(n-1))=0即:an/a(n-1)=2m/(m+3)所以{an}是等比数列,公比为2m/(m+3)an=[2m/(m+3)]^(n-1...
推荐
- 设数列{an}前n的项和为 Sn,且(3-m)Sn+2man=m+3(n∈N*).其中m为常数,m≠-3且m≠0有一步不懂请大侠解
- 设数列{an}的前n项和为Sn,且(3-m)Sn+2MAn=m+3(m∈N*),其中m为常数且m≠-3,求证:{an}为等比数列.
- 设数列an前n项和为Sn,且(3-m)Sn+2man=m+3,其中m为常数,且m不等于—3,求证an是等比数列
- 数列{an}前n项和为Sn且(3-m)Sn+2man=m+3(n属于N*)其中m为常数且m
- 已知数列{an}的前n项和为Sn,且Sn=a^n-2(a为常数,且a不等于0也不等于1)则数列{an}是什么?
- How are you going to shool tomorrow?翻译
- 欲除去铝壶底的水垢,所加的试剂为浓盐酸,
- 王老师计划把2万元钱存入银行,定期2年,年利率4.68%,到期后他可获得多少元?(要缴纳5%的利息税)
猜你喜欢