∴tanA•tanB=12k2-37k+26=1,
即12k2-37k+25=0,可得:k1=
25 |
12 |
又当k=1时,原方程为x2-x+1=0,其判别式△<0,舍去.
∴k=
25 |
12 |
(2)当k=
25 |
12 |
25 |
12 |
又tanA+tanB=
25 |
12 |
b |
a |
a |
b |
a2+b2 |
ab |
25 |
12 |
∴a2+b2=c2=100.∴ab=48 ①
而a2+b2=(a+b)2-2ab=100,且a+b>0.
∴a+b=14.②
由①②得:
|
|
又a>b,
则a=8,b=6.
25 |
12 |
25 |
12 |
25 |
12 |
25 |
12 |
25 |
12 |
b |
a |
a |
b |
a2+b2 |
ab |
25 |
12 |
|
|