∫dx/√(x(1-x)) 如何计算?书本的答案是arcsin(2x-1)+ c
可我计算出来的是2arcsin√x - c
计算如下:
令x=(sint)^2
∫dx/√(x(1-x))=∫2sintcostdt/sintcost=∫2dt=2t
我计算出来的是2arcsin√x + c
人气:114 ℃ 时间:2020-09-30 15:49:11
解答
arcsin(2x-1)与 2arcsin√x 仅相差一个常数令2arcsin√x=θ,则x=sin²(θ/2),所以:2x-1=2sin²(θ/2)-1=-cos(θ)=sin(θ-PI/2) PI是圆周率则: arcsin(2x-1)=arcsin[sin(θ-PI/2)]=θ-PI/2=2arcsin√x-...
推荐
猜你喜欢