√(1+x²)求导?

> 数学 > 正文
√(1+x²)求导?
人气:449 ℃ 时间:2020-04-02 03:54:49
优质解答
= (1/2)[(1+x²)^(-1/2)](1 + x²)'
= x/√(1 + x²)y = √(1 + x²)可以看作y = x^n, 其导数为nx^(n -1) (这里得1/[2√(1 + x²)] 然后按复合函数的公式, 还要求(1 + x²)的导数(=2x), 二者相乘即得:y' = x/√(1 + x²)y = √(1 + x²)可以看作y = x^n, 其导数为nx^(n -1) (这里得1/[2√(1 + x²)] 然后按复合函数的公式, 还要求(1 + x²)的导数(=2x), 二者相乘即得:y' = x/√(1 + x²)y = f(g(x))y' = f'(g(x))g'(x)
推荐
猜你喜欢
© 2022 79432.Com All Rights Reserved.
电脑版|小学|初中|高中