f(x)的图像始终在函数g(x)图像的上方
则f(x)>g(x)恒成立
[1+cos(2x+π/6)]/2>1/2*sin2x+a
1+cos(2x+π/6)>sin2x+2a
1+cos2x*√3/2-sin2x*1/2>sin2x+2a
3/2*sin2x-√3/2*cos2x<1-2a
√[(3/2)²+(√3/2)]sin(2x-z)<1-2a
√3sin(2x-z)<1-2a
其中tanz=(√3/2)/(3/2)=√3/3
因为sin(2x-z)最大=1
所以√3sin(2x-z)<=√3
则只要1-2a>√3就能满足
所以a<(1-√3)/2