将一个四位数的数字顺序颠倒过来,得到一个新的四位数.如果新数比原数大7992,那么所有符合这样条件的四位数中原数最大的是______.
人气:312 ℃ 时间:2019-10-19 22:38:50
解答
设原四位数为 a,b,c,d.(a,b,c,d 为 0-9的整数,a≠0),d必定大于a,且a和d均不为0,千位数相减;因为d-a=7不成立,因为,个位数相减10+a-d=2,所以d-a=8
此时只有一种组合,即a=1,d=9,此结果为固定;
再看b和c;从十位数看,b-1-c=9,
所以b-c=10,则b=c;
从百位数看,c-1-b=9,
所以c-b=10,也支持b=c,
要想原数最大,在a、d值已固定的情况下,
则唯使b、c,最大即可,即b=c=9,
故答案为:1999.
推荐
- 将一个四位数的数字顺序颠倒过来,得到一个新的四位数.如果新数比原数大7992,那么所有符合这样条件的四位数中原数最大的是_.
- 将一个四位数的数字顺序颠倒过来,得到一个新的四位数.如果新数比原数大7992,那么所有符合这样条件的四位数中原数最大的是_.
- 将一个四位数的各位顺序颠倒过来,得到一个新的四位数.如果新数比原数大7902
- 将一个四位数的数字顺序颠倒得到一个新的四位数,如果新数是原数的4倍,求原数
- 1. 将一个四位数的数字顺序颠倒过来,得到一个新的四位数,
- 如图所示,在正方形ABCD中有一点P,使得PA:PB:PC=1:2:3,求角APB度数,用勾股定理来算
- 英语感叹句怎么改
- boost与promote在英语中表示“提升、促进”的时候,两词的词义有什么区别?
猜你喜欢