> 数学 >
求∑(2^n/n)x^n收敛域
人气:197 ℃ 时间:2020-09-30 04:32:24
解答
    ∑[(2^n)/n]x^n = ∑[(2x)^n]/n,
由于
    |{[(2x)^(n+1)]}/{[(2x)^n]/n}| =|2x|*[n/(n+1)] → |2x| (n→inf.)
知当|2x| < 1,即 |x| < 1/2 时级数收敛,得知级数的收敛区间 (-1/2,1/2),又级数在 x = -1/2 收敛,在 x = 1/2 发散,所以该级数的收敛域为 [-1/2,1/2).
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版