已知抛物线y ax2+bx+c经过点A(-1,0),B(3,0),C(0,3)三点,直线L是抛物线的对称轴.
1:求抛物线的函数关系式; 2:设P点是直线L上一点,当三角形设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标; (3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.
人气:267 ℃ 时间:2020-05-11 02:08:13
解答
答:(1)把A(-1,0),B(3,0),C(0,3)代入抛物线方程得:a-b+c=09a+3b+c=00+0+c=3解得方程组为:a=-1,b=2,c=3所以抛物线方程为:y=-x^2+2x+3(2)y=-x^2+2x+3=-(x-1)^2+4,抛物线方程的对称轴x=1,设点P为(1,p)因为...
推荐
- 已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=-1,与X轴的一个交点为(x1,0),且0
- 如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(-2,-4),O(0,0),B(2,0)三点. (1)求抛物线y=ax2+bx+c的解析式; (2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.
- 如图,抛物线y=ax2+bx+c经过A(-1,0)B(3,0)C(0,3)三点,对称轴与抛物线交于点P,与直线BC相交于点M,连接PB.
- 已知抛物线Y=aX2+bx+c经过点A(0,3)B(1,0) C(5,0)三点 1.求抛物线解析式及对称轴
- 如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a-b+c的值为( ) A.0 B.-1 C.1 D.2
- I will try to play the piano more ________
- 用一张长18、84厘米,宽4厘米的纸围成一个最大圆柱,圆柱体积是多少?
- 如图,平面内有公共端点6条射线,OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7.图呈兴字形,相交,少了中间一点.
猜你喜欢
- 数学中的“空集”怎么解释呢?最好有简单明了的例子来说明.
- 标准规状况下,在O3发生器中装入100mlO2,最后提及变为95ml.则最终状态时,混合气体(O2和O3)的密度……
- 最大公约数的符号是什么?
- 一个负数在负数范围内增大时,它的相反数,倒数和绝对值的变化情况是:
- 3千克苹果平均分给10个小朋友,每个小朋友分的几千克?是3千克的几分之几?
- 请简单介绍下《一千零一夜》中的几个故事,主要内容
- 为什么氢氟酸腐蚀玻璃能在玻璃上雕刻花纹图案
- 平行四边形ABCD中,AE平分∠BAD交CD于E,BE垂直AE,试说明BE平分∠ABC