用反证法证明;若整数系数方程ax^2+bx+C=0(A0)有有理数,则A,B,C中至少有一个是偶数
人气:170 ℃ 时间:2019-11-21 20:54:57
解答
假设a,b,c都为奇数.
因方程有有理根,所以可设判别式b^2-4ac=d^2,a,b,c均为奇数,故b^2-4ac为偶数,d为奇数
故可设b=2p+1,d=2q+1
b^2-d^2=(b+d)(b-d)=(2p+2q+2)(2p-2q)=4ac
(p+q+1)(p-q)=(p+q+1)(p+q-2q)=ac
式左边若p+q为奇数,则p+q+1为偶数,左式为偶数;
若p+q为偶数,则p+q-2q为偶数,左式为偶数;
而式右由奇数a,c相乘后为奇数,显然等式不成立.
所以假设是错误的,a,b,c中至少有一个数是偶数.
推荐
猜你喜欢
- 工程队修一条长300米的路,第一天修的米数如果再加上9米,正好是全长的7/20,工程队第一天修了这条路的百分之几?
- ——,——,——,——,——,——等分类单位进行分类?
- 已知3的A次方=4,9的B次方=8,27的C次方=10,求27的A+3C-2B次方的值
- this flower is very beautiful改为感叹句
- never的短语
- 三角形的三个顶点分别在曲线xy=a(0
- 1/2x+1>-3 -2x-4<4x+4 2x+1>3 2-x<1 2(x+1)<3x 3(2x+2)≥4(x-1)+7 x/2+1>x 2/3x≤1/3(x-2)
- 用记忆犹新造句