如图,设细杆与另一走廊一边的夹角为θ(0<θ<| π |
| 2 |
设另一走廊的宽为y,∵AB=
| a |
| cosθ |
| a |
| cosθ |
| asinθ |
| cosθ |
| π |
| 2 |
依题意必存在一个适当的0值使y最小.
由y′(θ)=8acosθ−
| asin2θ+acos2θ |
| cos2θ |
| a |
| cos2θ |
令y'=0得cos3θ=
| 1 |
| 8 |
| 1 |
| 2 |
| π |
| 3 |
当cosθ<
| 1 |
| 2 |
| 1 |
| 2 |
∴当cosθ=
| 1 |
| 2 |
| π |
| 3 |
| 3 |
| 3 |

如图,设细杆与另一走廊一边的夹角为θ(0<θ<| π |
| 2 |
| a |
| cosθ |
| a |
| cosθ |
| asinθ |
| cosθ |
| π |
| 2 |
| asin2θ+acos2θ |
| cos2θ |
| a |
| cos2θ |
| 1 |
| 8 |
| 1 |
| 2 |
| π |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| π |
| 3 |
| 3 |
| 3 |