设函数f(x)=asin(Kx+pai3)和函数g(x)=btan(KX-pai/3)(K大于0)若它们的最小正周期之和为3pai/2,且f(pai/2)=g(pai/2),f(pai/4)=-根号3g(pai/4)+1,求这两个函数
人气:428 ℃ 时间:2020-01-28 23:56:03
解答
正弦函数的最小正周期是T1=2π/k
正切函数的最小正周期是T2=π/k
因为T1+T2=3π/2,即2π/k+π/k=3π/2,得k=2
f(π/2)=asin(2*π/2+π/3)=-√3/2*a
g(π/2)=btan(2*π/2-π/3)=-√3*b
所以)-√3/2*a=-√3*b,即a=2b.1
f(π/4)=asin(2*π/4+π/3)=1/2*a
g(π/4)=btan(2*π/4-π/3)=√3/3*b
1/2*a=-√3*(√3/3*b)+1.2
1式与2式组合得,a=1,b=1/2
所以f(x)=sin(2x+π/3)
g(x)=1/2tan(2x-π/3)
推荐
- 已知函数f(x)=asin(kx+π/3),g(x)=btan(kx-π/3),k>0,它们的周期之和为3π/2,且f(π/2)=g(π/2),f(π/4)=-
- 已知函数f(x)=asin(kx+π/3)和φ(x)=btan(kx-π/3),k>0
- 有两个函数f(x)=asin(kx+π/3),g(x)=btan(kx-π/3)(k>0),已知它们的周期和为3π/2,
- 已知函数f(x)=asin(kx+π/3)和φ(x)=btan(kx-π/3),k>0,且a;b是属于R两函数最小正周期之和是
- 已知函数f(x)=asin(ωχ+π/3),g(x)=btan(ωχ-π/3)(ω>0)的最小正周期之和为3π/2,且f(π/2)=g(π/2
- 将一个各个面上均涂有颜色的正方体锯成27个同样大小的小正方体 (Ⅰ)从这些小正方体中任取1个,求其中至少有两面涂有颜色的概率; (Ⅱ)从中任取2个小正方体,求2个小正方体涂上颜
- 甲乙丙三人各拿同样多的钱合买苹果若干千克.分苹果时,甲和丙都比乙多拿了7.5千克苹果,这样,甲和丙各应给乙6元钱,每千克苹果_元.
- 什么气词语
猜你喜欢