已知方程组{x²+ y²=8,x-y=k}有实数解,求实数k的取值范围
人气:425 ℃ 时间:2019-08-31 18:58:08
解答
因为 x^2+y^2=8,x--y=k,
所以 2xy=(x^2+y^2)--(x--y)^2
=8--k^2,
--xy=(k^2--8)/2,
所以 x,--y是方程 z^2--kz+(k^2--8)/2=0的两实根,
因为 方程组 x^2+y^2=8
x--y=k 有实数根,
所以 方程 z^2--kz+(k^2--8)/2=0 有实根,
所以 判别式 (--k)^2--4*1*(k^2--8)/2>=0
k^2--2k^2+16>=0
k^2
推荐
猜你喜欢
- 造句:天衣无缝和相安无事,要造一个句子,不能分开
- 习作:我喜欢的书中人物------200字左右
- 一根钢管长5米,平均截成8段,每段是这根钢管的(—);5段是这根钢管的(—),长(—)米
- 今天的事是我的错,对不起,请大家原谅,如果大家不能谅解,我会选择离开用英语怎么说啊
- 高一地理问题
- huo是三拼音节吗
- 水果店远处两框苹果共75千克.如果将甲框苹果的6分之1装入乙框,这时,甲乙两框苹果重量比是2;3,甲乙原来两框各有多少千克苹果
- 2a-3b/9=3a-2b/3=2