设A是(n≥2)阶方阵,A*是A的伴随矩阵.证明:
(1)r(A*)=n的充分必要条件是r(A)=n
(2)r(A*)=1的充要条件是r(A)=n-1
(3)r(A*)=0的充要条件是r(A)<n-1
人气:188 ℃ 时间:2019-08-22 16:10:35
解答
1) r(A)=n等价于det(A)≠0等价于det(A*)=1等价于 A*可逆 等价于r(A*)=n
2)
推荐
- 设A为n阶方阵,A*为A的伴随矩阵,证明:n,r(A)=n r(A*)= 1,r(A)=n-1 0,r(A)
- 设n阶方阵A的伴随矩阵为A*,证明:(1)若|A|=0,则|A*|=0;
- 设n方阵A满足A^2=A,E为n阶单位矩阵,证明R(A)+R(A-E)=n
- 设A,B为n阶方阵,E为n阶单位矩阵,证明:若A+B=AB,则A-E可逆.
- 伴随矩阵:设A是(n>=2)阶方阵,A*是A的伴随矩阵,证明:r(A*)=n的充要条件是r(A)=n-1.
- 稀硝酸和稀硫酸液态混合酸中,存在的阴离子主要是(),这是因为混合酸中不仅存在两酸的电离平衡,而且因硫酸的电离能力大于硝酸,又在无水条件下,混酸必然发生()反应(离子反应)造成.
- 哥白尼 生平事迹100字左右
- it didn't survive until the end of the century
猜你喜欢