二次函数f(x)=ax^2+bx+c(a>0) f(1)=-a/2 求证至少有一个零点在区间(0,2)之间
人气:267 ℃ 时间:2019-09-21 14:32:59
解答
f(1)=a+b+c=-a/2;
f(0)=c;
f(2)=4a+2b+c=2a+2(a+b+c)-c=a-c;
a>0;所以f(1)<0;
(1)当c>0时,f(0)=c>0;则f(0)*f(1)<0;此时f(x)在(0,1)之间有零点;
(2)当c<=0时,f(2)=a-c>0;则f(1)*f(2)<0;此时f(x)在(1,2)之间有零点;
综上f(x)在(0,2)之间有零点.
推荐
- 已知二次函数f(x)=ax2+bx+c. (1)若a>b>c且f(1)=0,试证明f(x)必有两个零点; (2)若对x1,x2∈R且x1<x2,f(x1)≠f(x2),方程f(x)=1/2[f(x1)+f(x2)]有两个不等实根,证明必有
- 若函数f(x)=ax+b的零点为2,那么函数g(x)=bx2-ax的零点是( ) A.0,2 B.0,12 C.0,-12 D.2,12
- 二次函数f(x)=ax²+bx+c 1.若a>b>c且f(1)=0求证f(x)必有两个零点
- 二次函数f(x)=ax^2+bx+c,若a>b>c,f(1)=0,试证明f(x)有两个零点(在线等)
- 已知二次函数f(x)=ax+bx+c满足条件a/(m+2)+b/(m+1)+c/m=0(m>0)证明:f(x)在区间(0,1)内必有零点
- 已知a>0,b>0,a,b的等差中项是1/2,且p=a+1/a ,q=b+1/b.则p+q的最小值是
- -7x+2=2x-4(解方程)
- 画一个面积是12平方厘米的长方形,长和宽的比是三比一,画一个周长20厘米的长方形,长和宽的比是三比二,画一个面积为十平方厘米的梯形
猜你喜欢