抛物线x^2=-2y与过点A M(0,-1)的直线l相交于A,B两点,O为坐标原点,若直线OA和OB的斜率和为1,求直线方程l
人气:180 ℃ 时间:2019-08-20 22:11:06
解答
设该直线为y=kx-1(∵y+1=kx),与y=-x²/2联立得:kx-1=-x²/2,得:x²+2kx-2=0 两根x1,x2为两交点横坐标,根据韦达定理有x1+x2=-2k 则对应的纵坐标为-x1²/2,-x2²/2,∴OA和OB斜率k1=-x1/2,k2=-x2...
推荐
- 抛物线X^2=4y 与过点M(0,2)的直线L相交于A.B两点,O为坐标原点,若直线OA与OB的斜率之和为2,求直线方程,
- 抛物线y=-x22与过点M(0,-1)的直线l交于A,B两点,O为原点,若OA和OB的斜率之和为1,求直线l的方程.
- 抛物线y=-x^2/2与过点M(0,1)的直线l交于A,B两点,O为原点,若OA和OB的斜率之和为1,求直线l的方程
- 抛物线Y=-2分之X的平方与过点M(0,1)的直线L交于A,B两点,O为原点,若OA,OB的斜率之和为1,求直线L
- 设直线l与抛物线y=-x^2/2相交于A、B两点,O为原点,若直线OA与OB的斜率之和为1,求直线l的斜率
- 英语作文never give up 300字
- 求几道难得几何证明题!初一下学期的、、帮帮忙
- 格列佛游记有讽刺意义的情节
猜你喜欢