函数f(x)=2sinωxcosωx+cos^2ωx-sin^2ωx
若ω>0,函数f(x)的最小正周期为π/2.
求ω的值,并求函数f(x)的最大值.
人气:491 ℃ 时间:2019-12-26 03:13:23
解答
f(x)=2sinωxcosωx+cos^2ωx-sin^2ωx
=sin(2wx)+cos(2wx)
=√2sin(2wx+π/4)
最小正周期为 2π/(2|w|)=π/2
所以 |w|=2 因为 w>0
所以 w=2
f(x)=√2sin(4x+π/4)
当 sin(4x+π/4)=1时 f(x)取得最大值为 √2
推荐
猜你喜欢
- 英语作文,因特网的重要性
- 解方程2分之1x+25%=10
- 初中宾语从句讲解
- 请问Mr.Green-_is a teacher 中间填英语单词
- anyting,you,to read,interesting,do,have连词成句急
- 设测站O点高程HO=37.32m,仪器高i=1.45m,盘左望远镜上仰时读数小于水平时读数90°,采用视距测量方法,测
- 关于基因工程的题
- () one's prime,其中的介词是什么?