∫∫√(x^2+y^2)dxdy 其中D是由圆x^2+y^2=a^2及x^2+y^2=ax所围成区域在第一象限的部分
求∫∫√(x^2+y^2)dxdy.请给出步骤和结果
人气:412 ℃ 时间:2020-01-30 10:01:55
解答
x^2+y^2=ax =>(x-a/2)^2 + y^2 = (a/2)^2
是在x^2+y^2=a^2的内部
设x = r cost ,y = rsint代入x^2+y^2 = a^2得r=a
代入x^2+y^2=ax得 r^2 = arcost 所以r=acost
所以r的积分限为(acost,a)
∫∫√(x^2+y^2)dxdy
= ∫∫r^2drdt = ∫ 1/3a^3 - 1/3a^3cos^3t dt = 1/3a^3 * 1/6 (3π-4) = (3π-4)a^3 / 18
推荐
- 计算 ∫∫D√(5-x^2-y^2)dxdy,D是由圆x^2+y^2=1,x^2+y^2=4及直线y=x,y=0所包围的在第一象限内的区域.
- 求积分∫∫|xy|dxdy=?,D为由圆x^2+y^2=a^2所围成的区域.∫∫的下面是D
- 求∫∫arctany/xdσ,其中D是由圆:x^2+y^2=4,x^2+y^2=1及直线y=0,y=x所围成的在第一象限内的闭区域
- 计算二重积分∫∫D(1-2x-3y)dxdy,D为圆x^2+y^2=1所围成的区域 注:∫∫的下面是D
- 计算二重积分:∫∫(D)ln(1+x^2+y^2)dxdy,其中D是由圆周x^2+y^2=1及坐标轴所围的在第一象限内的闭区域
- 200千克大豆可以榨油30千克.如果要榨油90千克,需要多少千克大豆
- 56乘99=()乘(100)-()=()-()=()
- 已知点P在抛物线y2=4x上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为( ) A.(14,−1) B.(14,1) C.(1,2) D.(1,-2)
猜你喜欢