证明∫x(f(x)^2)dx/∫xf(x)dx≤∫f(x)^2dx/∫f(x)dx(下线均为0.上限均为1)
f(x)为在[0,1]上单调减少且恒大于零的连续函数
人气:485 ℃ 时间:2020-02-02 21:02:47
解答
由f(x) > 0,原式等价于(∫{{0,1} t·f(t)²dt)·(∫{0,1} f(t)dt) ≤ (∫{{0,1} f(t)²dt)·(∫{0,1} t·f(t)dt).设F(x) = (∫{{0,x} f(t)²dt)·(∫{0,x} t·f(t)dt)-(∫{{0,x} t·f(t)²dt)·(∫{...
推荐
- 设f(x)在[0,1]上可微,且f(1)=2∫0~1/2 xf(x)dx,证明存在ξ属于(0,1),使f(ξ)+ξf'(ξ)=1
- 设f(x)在[a,b]连续且f′(x)>0,证明∫(a,b) xf(x)dx≥(a+b)/2 ∫(a,b)f(x)dx
- 证明∫(0,a)f(x^2)dx=1/2∫(0,a^2)xf(x)dx (a>0)
- (∫f(x)dx)^2(x下限为a,上限为b)
- f(x)在(0.1)上连续且单调增,证明∫[0,1]f(x)dx
- 设函数f(x)=|x-2|+x 求函数fx值域
- 用语文写一篇日记的要素有哪些?
- 菌种培养中的摇床主要起什么作用,对微生物有什么好处,转子培养是什么有什么不同,希望全面的回答,
猜你喜欢
- The new dress looks very nice.(改为感叹句,每空一词) ___ _
- 已知x=1时,ax^5+bx^3-cx+3的值为10,那么x=-1时,ax^5+bx^3-cx+17值
- (x-y)的五次方*(y-x)的五次方+【(x-y)五次方】的²
- 匡衡字稚圭,匡衡勤学而无烛.邻居有烛而不逮,衡乃穿壁引其光,以书映光而读之.邑人大姓文不识,家富多书,衡乃与其佣作而不求偿.主人怪问衡,衡曰:“愿得主人书遍读之.”主人感叹,资给以书,遂成大学.匡衡.字稚圭.勤学而无烛.邻舍有烛而不逮.衡乃
- co2缓冲液既可以释放co2又可以产生co2吗
- 数学函数极限和连续题
- x的2次方-2xy+y的2次方-2x+2y+1=?
- enrich-membership是什么意思