四棱锥P-ABCD的底面是矩形,PA⊥平面ABCD,E,F分别是AB,PD的中点,又二面角P-CD-B为45°,
设AD=2,CD=2√2求点A到平面PEC的距离
人气:379 ℃ 时间:2019-08-19 20:50:09
解答
PA⊥平面ABCD
所以PA⊥CD
ABCD的底面是矩形,AD⊥CD
PD⊥CD(三垂线定理)
CD⊥AD
所以二面角P-CD-B=角PDA=45°
PA=2,PE=根号6,PC=4,EC=根号6
现在设点A到平面PEC的距离为h
V(P-AEC)=V(A-PEC)
1/2*PA*S(AEC)=1/2*h*S(PEC)
2*2*根号2=4*根号2*h
h=1
推荐
- P为矩形ABCD所在平面外的一点,PA⊥平面ABCD,E,F分别是AB,PD的中点,又二面角P-CD-B为45°
- 四棱锥P-ABCD底面是矩形,PA垂直于ABCD,E.F分别是AB ,PD的中点又二面角P-CD-B为45度 求证:平面PEC垂直
- P是矩形ABCD所在平面外一点,PA⊥平面ABCD,E,F分别是AB,PD的中点,二面角P-CD-B为45°,证:AF‖平面PEC
- 四棱锥P-ABCD底面是矩形,PA垂直于ABCD,E.F分别是AB ,PD的中点又二面角P-CD-B为45度 1)求证:AF//平面P
- 在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=xAD,E是PD中点
- 1+1/(1+2)+1/(1+2+3)+……+1/(1+2+3+……+60+61)
- 超弦理论与十维空间是什么?
- 把(work you every to when go do day)组成句子
猜你喜欢