>
数学
>
设tanα,tanβ是关于x的一元二次方程mx^2+(2m-3)x+(m-2)=0,当m变化时,求tan(α+β)的最小值
人气:252 ℃ 时间:2020-05-01 13:15:53
解答
方程有两根
Δ=(2m-3)^2-4m(m-2)≥0
-12m+9+8m≥0
m≤9/4
tan(α+β)
=(tana+tanb)/(1-tanatanb)
=-(2m-3)/m / (1-(m-2)/m)
=3-2m / (m-m+2)
=(3-2m)/2
≥(3-2*9/4)/2
=-3/4为什么(tana+tanb)=-(2m-3)/mtanatanb=(m-2)/m?这个根与系数关系没有学过么0.0ax^2+bx+c=0的两根是x1,x2则x1+x2 = -b/ax1x2 = c/a
推荐
已知关于x的一元二次方程mx2+(2m-3)x+(m-2)=0的两根分别是tanα,tanβ.求tan(α+β)的取值范围.
已知关于x的一元二次方程mx2+(2m-3)x+(m-2)=0的两根分别是tanα,tanβ.求tan(α+β)的取值范围.
设一元二次方程mx^2+(2m-1)x+m+1=0的两根为tanα,tanβ,求tan(α+β)的取值范围
已知tana,tanβ是关于x的一元二次方程mx-(2m-3)x+m-2=0的两个实根.求M和2tan(a+β)的取值范围?
设关于x的一元二次方程mx²+(2m-1)x+(m-1)=0的两根为tanα,tanβ,求tan(α+β)的取值范围
let's stay at home and _____TV
明朝皇帝为什么要派郑和下西洋
一台碾米机5/6小时碾米7/12吨照这样计算,1小时可碾米【】吨,碾1吨米要【】小时.
猜你喜欢
现在六点十分英语怎么说
已知f(x)=-4x2+4ax-4a-a2在区间[0,1]内有最大值-5,求a的值及函数表达式f(x).
下列各组物质中,互为同系物的是
方程x-3分之x-2x-6分之1=2分之1的解是
这句怎么有两个谓语动词
IP电话应用的数据交换技术是什么?
楼间距如何计算
哥哥有28张邮票,比弟弟邮票张数的1.5倍少2张,他们两人一共有多少张邮票?
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版