高数证明题:f(a)=0,f(b)=0,若在(a,b)内可导,f(x)+xf'(x)在(a,b)里有没有存在0点 并证明
听说用中值定理可以证明 不过我还是不会
不太懂中值定理 c是怎么回事 我一定会采纳的
人气:202 ℃ 时间:2020-03-26 02:29:56
解答
构造一个辅助函数g(x)=xf(x),然后,g(a)=g(b)=0,这是用罗尔定理来证明的,然后根据这个 定理就可以知道必存在一点x.使得g‘(x.)=o,代入得:x.f’(x.)+f(x.)=0,其实中值定理就是用两点a,b间连线来做平行线,只要...
推荐
- 一道高数题,求高手指教.f(x)在x>0有定义,在x=1处可导,f(xy)=yf(x)+xf(y).证明f'(x)在x>0存在.
- 设f(x)在[a,b]上连续可导,a>0 .证明:存在ξ,η∈(a,b),使得f'(ξ)=[(a+b)/2η]f‘(η)
- 设f(x)在【0,1】上连续,在(0,1)可导,且f(1)=0,证明至少存在一点a,a属于(0,1),使得f ' (x)=-2f(a)/a
- 高等数学“若f(x)是奇函数,且f'(0)存在,则x=0点是函数F(x)=f(x)/x的可去间断点”?
- 设f(x)在[0,a]连续,在(0,a)可导,证明存在ξ∈(0,a)...
- 1.英才玩具厂计划生产540辆玩具车,前3天生产了135辆,照这样计算,还要几天完成生产任务?
- 求英文高手,告诉我下这句子语法对不?错的话要怎麼改
- 已知偶函数fx在区间[0,+无穷)单调递增,则满足f(2x-1)
猜你喜欢