设过抛物线y2=2px(p>0)的焦点F的弦PQ,则以PQ为直径的圆与抛物线准线的位置关系是( )
A. 相交
B. 相切
C. 相离
D. 以上答案均有可能
人气:254 ℃ 时间:2019-12-16 06:24:50
解答
设PQ的中点是M,M到准线的距离是d.
而P到准线的距离d
1=|PF|,Q到准线的距离d
2=|QF|.
又M到准线的距离d是梯形的中位线,故有d=
=
.
即圆心M到准线的距离等于半径
,
所以圆与准线是相切.
故选B.
推荐
- PQ为过抛物线焦点F的弦,作PQ的垂直平分线交抛物线对称轴于R点,求证|FR|=1/2|PQ
- 求证:以过抛物线y^2=2px焦点的弦为直径的圆,必与此抛物线的准线相切.
- 已知抛物线的一条过焦点F的弦PQ,且PQ的中点在抛物线的准线上的射影为R,则∠PRQ的弧度 ( ) A.大于π/2 B.等于π/2 C.小于π/2 D.无法确定
- 设MN与PQ是经过抛物线焦点的两条互相垂直的弦,它们的长度分别是a和b,求证:1/a+1/b是常量
- 证明以抛物线的焦点弦为直径的圆与抛物线的准线相切
- (a十1)(a+2)(a+3)(a+4)十M是—个完全平方式,求M的值,
- 《洁白的木槿花》中廖医生在别人需要帮助时是怎么做的?你觉得他是一个怎样的人?
- 求2012年7月19到8月1 日傍晚六点的月相图,还有8月1号到此月的农历月末早晨以前的月相图
猜你喜欢