lim(x->0)1/(x-asinx) ∫(sinx,0)t^2/(e^b+t^2)dt=1求a,b
人气:390 ℃ 时间:2020-03-28 12:33:02
解答
首先本极限为0/0型,用洛必达法则
由:∫(sinx,0)t^2/(e^b+t^2)dt求导后为:sin²xcosx/(e^b+sin²x)
原式=lim [sin²x/(e^b+sin²x)]/(1-acosx)
由于该极限为1,而分子极限为0,因此分母极限必为0,则a=1
极限化为:lim [sin²x/(e^b+sin²x)]/(1-cosx)
=lim [sin²x/(1-cosx)*lim [1/(e^b+sin²x)]
前一极限用等价无穷小代换,sin²x等价于x²,1-cosx等价于x²/2
=(1/2)e^(-b)
因此得:(1/2)e^(-b)=1解得:b=-ln2
因此a=1,b=-ln2
推荐
- 求a,b的值,使得lim(x->0)1/bx-sinx*∫t^2/√(a+t)dt=1{∫上面为x,下面为0}
- lim(x->0)1/x∫(0到sinx)cos(t^2)dt
- 设F(x)=∫(0趋向x) [(x-t)f(t)dt]/(sinx)^2 求lim(x趋向0)F(x),f(0)存在,
- 确定常数a,b,c的值,使lim(x趋于0) (ax-sinx)/[∫ ln﹙1+t³﹚/t dt]=c ,
- [x-∫[x:0]e^-t平方 dt]/(x^2)*sinx
- 作文有哪些类型
- 用feel这一个英文句子
- CE是RT三角形ABC的斜边AB上的高,BG垂直AP, 求证CE^2=ED乘EP
猜你喜欢