> 数学 >
已知集合A={x|x2-3x+2≤0},集合B为函数y=x2-2x+a的值域,集合C={x|x2-ax-4≤0},命题p:A∩B≠∅;命题q:A⊆C.
(1)若命题p为假命题,求实数a的取值范围;
(2)若命题p∧q为真命题,求实数a的取值范围.
人气:268 ℃ 时间:2020-05-10 06:00:47
解答
∵y=x2-2x+a=(x-1)2+a-1≥a-1
∴A={x|x2-3x+2≤0}={x|1≤x≤2},B={y|y≥a-1},C={x|x2-ax-4≤0},
(1)由命题p为假命题可得A∩B=∅
∴a-1>2
∴a>3
(2)∵命题p∧q为真命题命题
∴p,q都为真命题
即A∩B≠∅且A⊆C.
a−1≤2
1−a−4≤0
4−2a−4≤0
解可得0≤a≤3
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版