> 数学 >
一道高一数学题(属于平面向量和正余弦定理范围内):
已知 | a | = 2 ,| b | = 1 ,a 与 b 的夹角是 60°,求向量 2a + 3a 与 3a -b 的夹角(精确到 1 ′)
不好意思,上面打错了,是求向量 2a + 3b 与 3a -b 的夹角。
人气:425 ℃ 时间:2020-04-13 03:46:50
解答

2a + 3b 与 3a -b 的夹角为A (2a+3b)乘(3a-b)用分配率展开
=6 | a |^2-3| b |^2+7a乘b=28
7a乘b=7| a |乘| b |cos60度=7
而(2a+3b)乘(3a-b)本身是 | 2a+3b | 乘| 3a-b |cosA =28 前面算的
| 2a+3b |=根41 | 3a-b |=根31
所以 cosA=28除以(41乘31) 然后用计算器 反三角函数算就行了
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版