如图,已知∠ABC=90°,AB=BC,D为AC上一点,分别过C、A作CE⊥BD于点E.求证:EF=
如图,∠ABC=90°,AB=BC,D为AC上的一点,分别过点A、点C作CE⊥BD于点E,AF⊥BD于点F.求证:EF=CE-AF.
人气:180 ℃ 时间:2019-08-22 20:03:54
解答
因为CE⊥BD,AF⊥BD,得:
∠F=∠CED=90度而∠ADF=∠CDE
∴△AFD∽△CED,得:
∠ECD=∠FAD∠BAF=∠BAC+∠DAF=45度+∠ECD∠BCE=∠BCD-∠ECD=45度-∠ECD
∴∠CBE=90度-∠BCE=45度+∠ECD
则:∠BAF=∠CBE,又AB=BC∴RT△BFA≌RT△CEB有:BF=CE,BE=AF∴CE-AF=BF-BE=EF
推荐
- 如图,在三角形ABC中,AB=AC,在AB上取一点D,在AC的延长线上取一点E使BD=CE连接DE交BC于点F求证:DF=EF
- 如图,已知三角形ABC中,AB=AC,D是AB上一点,延长AC到E,使CE=BD,DE交BC于F.求证DE=EF.哎
- 如图,E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE,求证:△ABC是等腰三角形.
- 已知,如图在△ABC中,∠B=∠C,D,E,F,分别在AB,BC,AC上,BD=CE,且∠DEF=∠B,求证DE=EF
- 如图,△ABC中,AB=AC,点D、E分别在AB、AC的延长线上,且BD=CE,DE与BC相交于点F.求证:DF=EF.
- 二年级读书体会怎么写
- 微分几何入门与广义相对论看不懂看什么好
- 用加减消元法解{x+y=110,40x+20y=2400
猜你喜欢