> 数学 >
设△ABC的内角A,B,C的对应边分别是a,b,c,已知cos2B-cos2A=2sin(60°+B)sin(60°-B)
求角A的大小
人气:129 ℃ 时间:2020-06-19 09:26:46
解答
cos2B-cos2A=2sin(60°+B)sin(60°-B)
cos2B-cos2A=2sin((2×60°+2B)/2)sin((2×60°-2B)/2)
cos2B-cos2A=cos2B-cos120°
cos2A=cos120°
2A=120°
A=60°
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版