设函数f(x)可导,且满足f(x)=x^2+∫0~x f(t)dt,求f(x)
人气:355 ℃ 时间:2020-05-08 14:56:41
解答
∵f(x)=x^2+∫(0~x)f(t)dt
∴f(0)=0
f'(x)=2x+f(x),解此微分方程得f(x)=Ce^x-2x-2 (C是积分常数)
f(0)=C-2=0,即C=2.
故f(x)=2e^x-2x-2.
推荐
- 设f(x)为可导函数,且满足∫(上限为x下限为0)tf(t)dt=x^2+f(x),求f(x)
- 17,设f(x)为可导函数,且满足∫0到x tf(t)dt=f(x)+x^2 求f(x)
- 函数f(x)在0到无穷上可导,f(0)=1,且满足等式f'(x)+f(x)-1/(x+1)[0,x]∫f(t)dt=0 (1)求f'(x)
- 设函数f(x)在区间[a,b]上连续,在(a,b)内可导且f'(x)≤0,F(X)=1\(x-a)·∫<a,x>f(t)dt 证明:在内有
- 证明:设f(x)在(-∞,+∞)连续,则函数F(x)=∫(0,1)f(x+t)dt可导,并求F'(x)
- 用why do you learn English 写一篇作文
- 生物亲代与后代之间既有遗传,又有变异,这是什么现象
- 下列英语单词的反义词,
猜你喜欢
- when his mother came in,the boy pretended____(do)his homework
- “曲则全,枉则直,洼则盈,敝则新,少则多,多则惑”如何理解,不仅仅是翻译句子!
- 螺旋测微器的读法
- 设f(x)在[0,1]上是单调递减函数 试证明对于任何q属于[0,1]都有不等式∫q/0 f(x)dx≥q∫1/0f(x)dx 求详解
- (善,齐王有信士若此哉!)文言文翻译
- 甲乙丙合伙做生意甲出的钱是乙丙之和的三分之一,乙出的钱甲丙之和的二分之一.
- 什么是实义动词啊?
- 一根绳子长45米,第一次用去了3/5米,第二次用去了原长的2/5,还剩下多少米?