设f(x)在[0,1]上有连续导数,f(0)=0,0
人气:255 ℃ 时间:2019-10-11 13:01:40
解答
令F(x)=(积分(从0到x)f(t)dt)^2-积分(从0到x)f(t)^2dt,00,g(x)严格递增.故g(x)>g(0)=0,于是F'(x)=f(x)*g(x)>0.
故F(x)递增,故F(1)>F(0)=0,即要证不等式成立.
推荐
- 设f(x)在[0,1]上有二阶连续导数,证明:∫^(0,1)f(x)dx=1/2 (f(0)+f(1))- 1/2 ∫^(0,1)x(1-x)f"(x)dx
- 设f(x)在[0,1]上连续且可导,又f(0)=0,0≤f'(x)≤1 试证:[ ∫^(0,1)f(x)dx]^2≥∫^(0,1)[f(x)]^3dx
- 设函数f(x)在[0,1]上具有连续导数,且f(0)+f(1)=0,证明:|∫ f(x)dx|≤1÷2×∫ |f’ (x) |dx
- 设f(x)具有二阶连续导数,求∫xf''(x)dx
- 设f(x)在[0,1]上有二阶连续导数,证明:∫(-1,2)f(x)dx=1/2[f(1)+f(2)]-1/2∫(1,2)(2-x)(x-1)f"(x)dx
- 1.——that he stayed at home all day without meeting anyone.
- 我数学还不错,但英语很烂,永远在75分左右;还有地理烂啊!我是广东省高二文科生..
- 甲数比乙数大9,两个数的积是792,求甲、乙两数分别是多少.
猜你喜欢