>
数学
>
如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F.
(1)求证:AD=CE;
(2)求∠DFC的度数.
人气:293 ℃ 时间:2019-11-23 12:04:30
解答
(1)证明:∵△ABC是等边三角形,
∴∠BAC=∠B=60°,AB=AC.
又∵AE=BD,
∴△AEC≌△BDA(SAS).
∴AD=CE;
(2)
∵(1)△AEC≌△BDA,
∴∠ACE=∠BAD,
∴∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.
推荐
如图,在等边△ABC中,点D、E分别在BC、AB上,AD与CE交于F,且BD=AE.则∠DFC=_度.
如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F. (1)求证:AD=CE; (2)求∠DFC的度数.
如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F. (1)求证:AD=CE; (2)求∠DFC的度数.
如图,已知AB=AC,AD=AE.求证:BD=CE.
如图,在等边三角形abc中,点DE分别在边BC,AB上,且BD=AE,AD与ce交于点F,求∠DFC的度数.
EUROPEAN WOLF是用A还是AN
设函数的定义域为{x|x不等于0}且f(x)-2f(x分之一)=x 求函数f(x)的解析式
一个圆柱体形状的油桶,底面半径是20厘米,里面装了30厘米深的油.已知油桶里的油与油桶的容积的比是5:8,这个油桶的容积是多少立
猜你喜欢
随便一个数乘以5加7然后乘以2再减4其结果减10再除以10等于原来的那个数为甚麽
想要写一篇关于保持健康的英语作文该怎样写?
固定化酶的方法?
到,是不是动词
梅花的精神值得歌颂.改为双重否定句:
大米和面粉共80千克,吃去面粉的1/3和大米的1/5共20千克,大米和面粉各有多少千克.
已知A=2x²-x+6,B=-x²+3x-4,求A+B的值
直线l上依次有三点A,B,C,AC= 60cm,一只电子蚂蚁甲从C点出发向A点移动,运动速度为lcm/s.(1)当甲走到BC中点时,求它到A,B的距离和;(2)当甲从BC中点D走到AB中点E,共用多长时间?(3)当甲从AB中点E返回时,另一
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版