已知二次函数f(x)=ax2+bx+c,f(1)≠f(3),证明方程f(x)=1/2[f(1)+f(3)]必有个实数根属于区间(1,3)
人气:255 ℃ 时间:2020-02-02 22:06:27
解答
设g(x)=2f(x)-f(1)-f(3)
所以g(1)=f(1)-f(3) g(3)=-(f(1)-f(3))
所以g(1)g(3)=-(f(1)-f(3))²
因为f(1)≠f(3)
所以g(1)g(3)<0 又因为g(x)在(1,3)连续
所以方程g(x)=2f(x)-f(1)-f(3)=0在(1,3)有根
也即方程f(x)=1/2[f(1)+f(3)]必有个实数根属于(1,3)
推荐
- 已知二次函数fx=ax的平方+bx,满足条件f(2)=0,切方程f(x)-1=0有两个相等的实数根 用定义证明
- 已知二次函数f(x)=ax^2+x+c,满足f(1)=0,且关于x的方程f(x)+2x-a=0的两个实数根分别在区间(-3,-2)和(0,1)内,求实数a的取值范围?
- 若F(1)≠F(3),证明方程F(X)=二分之一乘【F(1)+F(3)】必有一个实数根属于区间(1,3)
- 证明方程3^x=(2-x)/(x+1)在区间(0,1)上有且只有一个实数根
- 证明方程x^4-4x-2=0在区间[-1,2]内至少有两个实数根
- 有限个无穷小的积还是无穷小,那么无限个呢?
- 已知ab n的平方是关于a、b的三次单项式,则n=( )
- 用代入法解下列方程要过程 (1) a=2b+3 a=3b+20 (2) x-y=13 x=6y-7 (3)x-y=4 4x+2y=-1 (4)5x-y=110 9y-x=11
猜你喜欢
- 造句:天衣无缝和相安无事,要造一个句子,不能分开
- 习作:我喜欢的书中人物------200字左右
- 一根钢管长5米,平均截成8段,每段是这根钢管的(—);5段是这根钢管的(—),长(—)米
- 今天的事是我的错,对不起,请大家原谅,如果大家不能谅解,我会选择离开用英语怎么说啊
- 高一地理问题
- huo是三拼音节吗
- 水果店远处两框苹果共75千克.如果将甲框苹果的6分之1装入乙框,这时,甲乙两框苹果重量比是2;3,甲乙原来两框各有多少千克苹果
- 2a-3b/9=3a-2b/3=2