已知圆C:(x-1)2+(y-2)2=25,直线L:(2m+1)x+(m+1)y-7m-4=0(m∈R)
(1)证明:无论m取什么实数,L与圆恒交于两点;
(2)求直线被圆C截得的弦长最小时直线L的斜截式方程.
人气:216 ℃ 时间:2019-10-20 00:13:50
解答
(1)将直线l方程整理得:(x+y-4)+m(2x+y-7)=0,由x+y−4=02x+y−7=0,解得:x=3y=1,∴直线l恒过A(3,1),∵(3-1)2+(1-2)2=5<25,∴点A在圆C内部,则直线l与圆恒有两个交点;(2)由圆的方程得到圆...
推荐
- 已知圆(x-1)^2+(y-2)^2=25及直线l:(2m+1)x+(m+1)y=7m+4(m属于R,证明不论m取何实数,l与c恒相交
- 已知圆(x-1)^2+(y-2)^2=25及直线l:(2m+1)x+(m+1)y=7m+4(m属于R,证明不论m取何实数,直线和圆恒相交于两点
- 已知圆C:(x-1)^2+(y-2)^2=25,直线L:(2m+1)x+(m+1)y-7m-4=0,求证不论m取什么实数,直线恒与圆相交于两点
- 已知圆(x-1)²+(y-2)²=25及直线(2m+1)x+(m+1)y=7m+4证明不论m取什么实数,直线与圆恒相交
- 已知直线I:(2M+1)X+(M+1)Y-7M-4=0和圆C:(X-1)^2+(Y-2)^2=25证明:不论M取任何实数,直线I与圆C恒交于两点.分别求:直线I被圆C截得的弦长最短和最长时直线I的方程
- 有一直角三角形,已知一直角边是25厘米,另一直角边是20厘米,求另一边
- 描写颜色美丽、鲜艳、丰富的四字词语
- (我们说好的,要一起走过3年)用英文怎么说
猜你喜欢