设三事件A,B,C满足条件,P(AB)=P(BC)=P(AC)=1∕8,P(ABC)=1∕16,则A,B,C中至多发生一个的概率为多少?
人气:249 ℃ 时间:2019-12-06 23:23:49
解答
至多发生一个,这个事件的可以理解为至多发生两个的对立事件.为(AB+AC+BC)的逆事件,所以所求的概率为1-P{(AB+AC+BC)}而P{(AB+AC+BC)}=P(AB)+P(AC)+P(BC)-3P(ABC)+P(ABC)=1/8×3-1/8=1/4,所以你的答案为3/4
推荐
- ABC为三个随机事件,P(A)=P(B)=P(C)=1/4,P(AB)=P(BC)=1/16,P(AC)=0,求,ABC至少有一个发生的概率;
- ABC为三个随机事件,P(A)=P(B)=P(C)=1/4,P(AB)=P(BC)=1/16,P(AC)=0,求,ABC全都不发生的概率;
- 设ABC为三个事件,且P(A)=P(B)=1/4,P(C)=1/3且P(AB)=P(BC)=0,P(AC)=1/12,求ABC至少有一个发生的概率
- 设A,B,C是三事件,且P(A)=P(B)=P(C)=1/4,P(AB)=P(BC)=0,P(AC)=1/8,求A,B,C至少有一个发生的概率.
- 已知P(A)=P(B)=P(C)=1/4, P(AB)=P(AC)=P(BC)=1/8,P(ABC)=1/16,求恰好有一个发生的概率
- 4x-15.2=30解方程
- 已知∠1与∠2是对顶角,∠1与∠3是邻补角,则∠2+∠3= _ 度.
- i don't know怎么翻译?
猜你喜欢
- x+y=1,则代数式½x²+xy+½y²的值是什么
- 15%相当于25%的( )%
- 若cos(pai+a)=-1/3,那么sin(3pai/2-a)=
- 在语文课程总目标中为什么要强调课外阅读,并且规定九年课外阅读总量应在400万字以
- 在三角形ABC中,角ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.试探究:当三角形ABC满足什么条件时,CF垂直于BC(点C、FC重合除外)?画出相应图形,并说明理由
- 过氧根和超氧根的计算
- zyz/where the skies are blue ,to see you once again .
- 原电池正负极与电解池正负极一样吗?