一道高一数学练习题(属于平面向量和正、余弦定理范围内):
已知向量 OA→ ,OB→ ,OC→ 满足条件 OA→ + OB→ + OC→ = 0 (零向量),
| OA→ | = | OB→ | = | OC→ | = 1 ,求证 :△ABC 是正三角形.(因为向量符号“→”无法标注在字母上方,只能紧跟字母写在后面,请朋友们理解,)
人气:169 ℃ 时间:2020-04-12 04:57:40
解答
因为:| OA→ | = | OB→ | = | OC→ | = 1
所以:A,B,C三点在以O为圆心的单位圆上.
再因为:OA→ + OB→ + OC→ = 0
所以:以OA,OB为邻边的平行四边形的对角线长度等于OB的长度,既为1
由余弦定理易得OA→ 和OB→夹角为120 °
同理:OA→ 和OC→夹角为120 °
OB→和OC→ 夹角也为120 °
故△ABC 是正三角形.
推荐
- 一道高一数学练习题(属于 平面向量 与三角形正、余弦定理范围内):
- 一道高一数学题(属于平面向量和正余弦定理范围内):
- 在直角坐标系中,△ABC的三个顶点坐标分别为A(3,4),B(0,0),C(c,0),若∠A为钝角,则c的取值范围为_.
- 在三角形ABC中,已知A>B>C,且A=2C,b=4,a+c=8,求a、c的长.
- 在三角形ABC中,若三边的长为连续整数,且最大角是最小角的二倍,则三边的长分别是?
- 关于人工智能
- 用“光彩”的不同意思造两个句子,马上就要,
- 欧式空间R^n中又线性无关的向量组a1,a2...am.用特定的方法可以产生一组标准正交化向量b1,b2,.,bm.满足下列要求:span{a1,a2.ak}=span{b1,b2.bk}k=1,2,...,m.其中span为张成的子空间,
猜你喜欢