已知动圆M和动圆C1:(x+1)^2+y^2=36内切,并和圆C2:(x-1)^2+y^2=4外切,
(1)求动圆圆心M的轨迹方程
(2)过圆C1和圆C2的圆心分别作直线交(1)中曲线于B,D和A,C,且AC⊥BD,垂足为P(xo,yo),求(xo+1)^2+(yo+2)^2的最大值(要详解)
(3)求四边形ABCD面积的最小值
人气:212 ℃ 时间:2020-05-12 09:25:48
解答
(1)求出C1,C2的圆点坐标,设M坐标(X,Y),圆M的半径为R.
M-C1的距离为6-R,M-C2的距离为6+R,联立,消元,得出二元一次方程可解X,Y.
(2)设·两条方程:Y1=K1X1+B1,Y2=K2X2+B2.代入C1C2的坐标,求出两条含K1K2的方程①②
联立①②,求出X0Y0的坐标,(用K来表示),代入·(xo+1)^2+(yo+2)^2求出一条只含K的方程,利用二次函数或基本不等式即可求最大值.
(3)因为AC⊥BD所以面积为AC乘BD,由第二题求出K值,代入两条含K1K2的方程①②
联立·M的轨迹方程,求出ABCD,即可求.
推荐
- 高中圆锥曲线题
- 高中圆锥曲线题,
- 若圆锥曲线x2k−2+y2k+5=1的焦距与k无关,则它的焦点坐标是_.
- 如图,设椭圆y2a2+x2b2=1(a>b>0)的右顶点与上顶点分别为A、B,以A为圆心,OA为半径的圆与以B为圆心,OB为半径的圆相交于点O、P. (1)若点P在直线y=32x上,求椭圆的离心率; (2)在(1
- 高中圆锥曲线题,
- 高一新生化学题其中A为氧化物,B,C,D为盐.
- 有一个长方体,如果高增加3厘米,就变成了一个正方体,表面积增加了原来的84平方厘米.原来的体积是多少?
- 下面的字母是按照一种规律排列,请找出规律,并说出下一个字母是什么.O T T F F S S E
猜你喜欢