已知圆的方程为x^2+y^2-4x-2y-20=0,(1)斜率为-4/3的直线l被圆所截线段长为8,求直线方程(2)在圆上求两点A和B,使它们到直线K:4x+3y+19=0的距离分别取得最大值或最小值
人气:221 ℃ 时间:2019-11-04 09:21:04
解答
1)
将圆方程化成标准方程:(x-2)^2+(y-1)^2 =5^2;
由是知:圆半径为5,直径为10;
由勾股定理知:当圆心(2,1)距相关直线距离为3时弦长为4+4=8;
所以:圆心(2,1)到直线距离为3;
又因为:点到直线距离公式为:d=|kx-y+b|/(√1+k^2)(其中k,b为参数);
又因为:k=-4/3已知,b待求;
所以:联立方程解得:b=-4/3 或 b=26/3
即:直线:l1:3y+4x+4=0 或 l2:3y+4x-26=0
2)
d2=|4*2+3*1+19|/(√3^2 +4^2)=6;
画图易知:1=(d2-r)
推荐
- 已知圆的方程为x^2+y^2-4x-2y-20=0,(1)斜率为-4/3的直线l被圆所截线段长为8,求直线方程(2)在圆上求两点A和B,使它们到直线K:4x+3y+19=0的距离分别取得最大值或最小值.
- 求过两圆x^2+y^2-4x+2y=0,x^2+y^2-2y-4=0的交点,且半径最小圆的方程
- 已知圆x^2+y^2-4x+2y=0关于直线x+y-2=0对称,求对称圆的方程
- 圆C:x2+y2-4x+2y+4=0关于直线x-y+3=0对称的圆方程是_.
- 求过已知圆x2+y2-4x+2y=0,x2+y2-2y-4=0的交点,且圆心在直线2x+4y=1上的圆的方程.
- A,B两地之间每隔45米栽一根电线杠,包括两端的电线杠在内,共栽有65根电线杆.现在要改为每隔60米栽一根
- 标定EDTA标准滴定溶液时,采用的基准物质及指示剂是什么?为什么?
- 心电图机英文说明 ECG 8800说明
猜你喜欢