证明:设向量组a1a2a3.an线性相关,
设向量组a1a2a3.an线性相关,且它的任意n-1个向量线性无关.证明向量组a1a2.an中任一向量都可由其余向量线性表出
人气:241 ℃ 时间:2020-06-10 12:49:58
解答
因为 a1,a2,...,an 线性相关
所以存在一组不全为零的数 k1,k2,...,kn 满足
k1a1+k2a2+...+knan=0
由于任意n-1个向量线性无关
所以k1,k2,...,kn都不等于0
(假如k1=0,则k2a2+...+knan=0
而a2,...,an 线性无关
故 k2=k3=...=kn=0
这与k1,k2,...,kn不全为零矛盾)
所以 任一向量都可由其余向量线性表出
推荐
- 证明:若已知向量组a1a2a2...an的秩为r(r
- o为正多边形A1A2A3.An的中心.证明:向量OA1+向量OA2+.+向量OAn=o
- 设向量组a1a2a3线性相关,a2a3a4线性无关,证明向量a1必可表示为a2,a3,a4的线性组合
- 证明:若a1a2a3向量线性相关,a2a3a4线性无关,证明a1能由a2a3线性表示
- 设a1,a2,…,an是一组线性无关的n维向量,证明:任一n维向量都可由它们线性表示.
- full time nanny阅读翻译
- “浪漫满屋”服装店的老板,为了提高销售额,先将所有商品提价30%,而后又打出“所有商品8折优惠”的广告.原来一件毛衣80元,现在几元了?
- 设x+2z=3y,试判断x²-9y²+4z²+4xz的值是不是定制
猜你喜欢