已知二次函数f(x)=ax方+bx+c(a≠0)且满足f(-1)=0,对任意实数x恒有f(x)—x≥0,并且当x∈(0,2)
人气:316 ℃ 时间:2019-08-21 00:43:35
解答
(1)∵对于任意x∈R,都有f(x)-x≥0,且当x∈(0,2)时,
有f(x)≤(x+1 2 )2.令x=1
∴1≤f(1)≤(1+1 2 )2.
即f (1)=1.
(2)由a-b+c=0及f (1)=1.
有 a-b+c=0 a+b+c=1 ,可得b=a+c=1 2 .
又对任意x,f(x)-x≥0,即ax2-1 2 x+c≥0.
∴a>0且△≤0.
即1 4 -4ac≤0,解得ac≥1 16 .
(3)由(2)可知a>0,c>0.
a+c≥2 ac ≥2• 1 16 =1 2 .
当且仅当 a=c a+c=1 2 时等号成立.此时
a=c=1 4 .
∴f (x)=1 4 x2+1 2 x+1 4 ,
F (x)=f (x)-mx=1 4 [x2+(2-4m)x+1].
当x∈[-2,2]时,f (x)是单调的,所以F (x)的顶点一定在[-2,2]的外边.
∴|2-4m 2 |≥2.
解得m≤-1 2 或m≥3 2 .点评:本题考查了二次函数的性质,函数的恒成立问题,以及不等式的证法,属于中档题.
推荐
- 已知二次函数f(x)=ax^2+bx+c(a≠0)且满足f(-1)=0,对任意实数x,恒有f(x)-x≥0,
- 已知二次函数f(x)=ax2+bx+c的导数为f′(x),f′(0)>0,对于任意实数x,有f(x)≥0,则f(1)f′(0)的最小值为( ) A.2 B.52 C.3 D.32
- 已知二次函数f(x)=ax2+bx+c(a≠0)且满足f(-1)=0,对任意实数x,恒有f(x)-x≥0,并且当x∈(1,2)时
- 已知二次函数f(x)=ax+bx+c(a,b,c∈R)满足:f(1)=1,f(-1)=0,且对任意实数x恒有f(x)≥x成立.问
- 已知二次函数f(x)=ax2+bx+c,若对一切实数x,f(x)≥f′(x)恒成立,其中f′(x)是f(x)的导函数. (I)求证:f(x)的图象与x轴无交点; (II)若方程f(x)-2f′(x)=0有两上不同的
- 谁能帮我翻译一下下面的句子? 谢谢!
- 方程|sinx|/x=k在(0,∞)内有两个不同的解α、β(α
- 自农耕经济有何特点?
猜你喜欢
- 如果X=5y,那么x和y成( )比例;如果xy=5,那么x和y成( )比例.
- 微分公式问题求解答!谢谢!
- 电路的动态分析
- 甲乙两车同时从ab两地出发,甲车每小时行48米,乙车每小时行40米,两车在距中点32米处相遇,两地相距多少
- 小红5分钟走了300米,照这样的速度,他用15分钟走完了从家到学校的一半路程.小红家到学校有多远?
- 请问can`t take my eyes off you中文歌词
- From now on,love yourself,enjoy living then
- 我一直想知道宇宙是无限大的吗?那最外面是什么呢?