设β1,β2是非其次线性方程组AX=b的两个不同的解,η1,η2是对应齐次线性方程组AX=0的基础解系.k1,k2为任意常数,则AX=b的通解必为 ( )
B k1η1+k2(η1-η2)+(β1+β2)/2
D k1η1+k2(β1-β2)+(β1+β2)/2
我错选了D.按我之前的理解,根据同济第五版教材P101的性质三:β1-β2为AX=0的解,所以选择D,B不能确定.求纠正+解答,我好多概念不清楚的
人气:433 ℃ 时间:2020-05-17 05:12:51
解答
b是对的,d不能证明b1-b2和伊塔1线性无关是导出组的基础解系得线性无关然后再加上一个特解就组成非齐次的通解
推荐
- 已知β1、β2是非齐次线性方程组AX=b的两个不同的解,α1、α2是对应齐次线性方程组AX=0的基础解析,k1、k2为任意常数,则方程组AX=b的通解(一般解)必是( ) A.k1α1+k2(α1+α2)+β1-β22 B.
- 已知β1、β2是非齐次线性方程组AX=b的两个不同的解,α1、α2是对应齐次线性方程组AX=0的基础解析,k1、k2为任意常数,则方程组AX=b的通解(一般解)必是( ) A.k1α1+k2(α1+α2)+β1-β22 B.
- 设x0是非齐次线性方程组Ax=b的一个解,α1,α2,...,αn-r是对应的齐次线性方程组Ax=0的基础解系,证明
- η*是非齐次线性方程组Ax=b的一个解,ξ1,ξ2,ξ3,...,ξn-r,是对应的齐次线性方程组的一个基础解系,求证
- 设β是非齐次线性方程组Ax=b的一个解,α1,α2,...,αn-r是对应的齐次线性方程组Ax=0的基础解系,
- 80-1.1-2.1-3.1-4.1-5.1-6.1-7.1-8.1-9.1-10.1用简便方法计算
- 一游客划着小船逆流而上,船上一只皮球掉入河里,2分钟后游客发现,立即掉头追皮球,问游客几分钟追上皮球
- 抛物线焦点到准线的距离是2p吗?
猜你喜欢