如果多项式(x2+mx+n)(x2-3x+4)展开后不含x3和x2项,则m,n的值分别是( )
A. 3,4
B. 4,3
C. 3,5
D. 5,3
人气:177 ℃ 时间:2020-04-29 22:21:05
解答
(x2+mx+n)(x2-3x+4)
=x4-3x3+4x2+mx3-3mx2+4mx+nx2-3nx+4n
=x4+(m-3)x3+(4-3m+n)x2+4mx-3nx+4n
∵不含x3和x2项,
∴m=3,n=5,
故选C.
推荐
猜你喜欢
- 正多边形面积240,周长60,求边心距和内切圆半径
- 如果物体所受合力为零,则合力对物体做的功一定为零.这句话对吗?
- 当时的报纸上宣传“人有多大胆,地有多大产”的口号对不对?他们说的对吗?你怎么看?
- 如图,在三角形abc中,角b=50度,角c=70度,ad是三角形abc的角平分线,求角bad和角adc的度数.
- 数学题零件
- 对一定的导体他两端的电压与通过它的电流强度的比值保持不变?
- 《行道树》中说“我们的命运是被安排定了”,又说“这种命运事实上是我们自己选择的”,这是不是矛盾?应该如何理解?
- a4+b4; 如何分解