对于正整数n.证明:f(n)=32n+2-8n-9是64的倍数.
人气:316 ℃ 时间:2019-08-18 14:43:53
解答
证明:(1)当n=1时,f(1)═34-8-9=64能被64整除,命题成立.(2)假设当n=k时,f(k)=32k+2-8k-9能够被64整除. 当n=k+1时,f(k+1)=32k+4-8(k+1)-9=9[32k+2-8k-9]+64k+...
推荐
猜你喜欢
- 在密闭恒容容器中,进行下列反应:X(g)+3Y(g)=2Z(g),达到平衡状态后,其他条件不变,只增加X的量X的转化率为
- 等腰三角形ABCD的中位线EF的长是8,他的腰长DC垂直于BD角DBC等于30度,求梯形的周长
- 1.已知f(x)是偶函数,在区间[a,b]上位减函数(0
- 关于用高锰酸钾配制溶液
- △ABC中,∠A、∠B均为锐角,且|tanB−3|+(2sinA−3)2=0,试确定△ABC的形状.
- 求导y=(1+1/x)的x次方
- 学校图书室有108本连环画,按2:3:4的比例借给甲、乙、丙三个班,丙班比甲班多借多少本?
- 从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( ) A.49 B.13 C.29 D.19