> 数学 >
y=f(x)在[0,2]上具有连续导数 f(0)=f(2)=0 M是丨f'(x)丨在[0,2]上的最大值证明f(x)在[0,2]积分的绝对值<=M
y=f(x)在[0,2]上具有连续导数,f(0)=f(2)=0,M是丨f'(x)丨在[0,2]上的最大值,证明f(x)在[0,2]积分的绝对值<=M
人气:456 ℃ 时间:2019-10-05 00:44:05
解答
在[0,1]和[1,2]上分别使用拉格朗日中值定理得|f(x)-f(0)|<=M(x-0),和|f(x)-f(2)|<=M(x-2),然后再把[0,1]的积分写成[0,1]和[1,2]的积分的和,可得结论
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版