> 数学 >
设a>0,函数f(x)=
x
a2+x2
的导函数为f'(x).
(Ⅰ)求f'(0),f'(1)的值,并比较它们的大小;
(Ⅱ)求函数f(x)的极值.
人气:189 ℃ 时间:2020-04-15 21:59:46
解答
由于函数f(x)=xa2+x2(a>0)的导函数为f'(x),则f′(x)=(a2+x2)−x×2x(a2+x2)2=a2−x2(a2+x2)2=−(x+a)(x−a)(a2+x2)2(1)f'(0)=1a2,f'(1)=a2−1(a2+1)2由于a>0,a2<a2+1,则1a2>1a2+1&n...
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版