矩阵A与B的行向量组等价的充分必要条件为什么是齐次方程组Ax=0与Bx=0同解
最好能证明一下,
人气:203 ℃ 时间:2020-04-13 22:56:59
解答
证:必要性
因为A与B的行向量组等价
所以A可经初等行变换化为B
所以存在可逆矩阵P,使得 PA=B
易知 AX=0 的解是 PAX=0 的解.
反之,PAX=0 的解 也是 P^-1PAX=0 即 AX=0 的解
所以 AX=0 与 PAX=0 同解
即 Ax=0与Bx=0同解.
充分性
由 Ax=0与Bx=0同解
知 A,B 的行简化梯矩阵相同
即存在可逆矩阵P,Q,使得 PA=QB
所以 Q^-1PA=B
所以 A与B的行向量组等价.
推荐
- 设A为m*n矩阵,B为n*s矩阵,证明:AB=0的充要条件是B的每个列向量均为齐次线性方程组AX=0的解.
- 若3元齐次线性方程组ax=0的基础解系含2个解向量,则矩阵a的秩等于__________.
- 线性代数问题:方程组AX=0有非零解的充分必要条件是 (A) 系数矩阵行向量线性无关 (B) 系数
- 设A为4*5的矩阵,且秩(A)=2,则其次方程组AX=0的基础解系所含向量的个数为什么是3呢?
- 证明设A为s×m矩阵,B为m×n矩阵,X为n维未知列向量,证明齐次线性方程组ABX=0与BX=0同解的充要条件是
- 用容量瓶定容时仰视读刻度,读出来的体积实际上是偏大还是偏小,和量筒一样不?
- 有定义int a=2,b=3,c=10;则计算表达式 a+=b+2,c-=a+1 后c的值是
- you can never tell
猜你喜欢