设A为2阶矩阵,α1,α2是两个线性无关的二维向量,Aα1=O,Aα2=2α1+α2,求A的非零特征值.
人气:359 ℃ 时间:2020-01-30 00:33:25
解答
其实,把 A^2a2=Aa2 改写下,为 A(Aa2)=Aa2=1*Aa2 ,
说明 1 是 A 的特征值,对应的特征向量为 Aa2 ,也即 2a1+a2 .可以的 。 因为 Aa2 是向量。
推荐
- 设A为2阶矩阵,α1,α2为线性无关的2维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为?
- 设A为二阶矩阵,a1,a2,为线性无关的二维列向量,且Aa1=2a1,Aa2=2a1+a2,求矩阵A的特征值
- 一个3阶矩阵只有2个线性无关的特征向量,而这个矩阵只有一个3重根的特征值,求矩阵的秩
- λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,求证α1,α2线性无关.
- 如果向量X是矩阵A的一个非零特征值λ所对应的特征向量,则X是A的列向量的线性组合.这句话是否正确,要理由
- 0.78÷0.3÷0.2=0.78÷( )括号里填什么
- 若a+1<0,则-|a+1|等于多少?
- 某质点做变速运动,初始的速度为3m/s,经3s速率仍为3m/s则( ) A.如果该质点做直线运动,该质点的加速度不可能为零 B.如果该质点做匀变速直线运动,该质点的加速度一定为2m/s2 C.如果
猜你喜欢