> 数学 >
有理数集合表示法的为问题,
我在看同济第五版高数上册时,其第2页第5行写到:全体有理数的集合记作Q,即
Q={p/q|p∈Z,q∈N+且p与q互质},如果p与q互为质数的话,那p/q岂不是不可能是整数,而有理数应该包括整数的啊?
还有,p/q难道就不会又无限不循环小数出现吗?
人气:480 ℃ 时间:2020-04-04 11:41:21
解答
对于第一个问题
当q=1时,p/q=p,集合Q就包含了所有整数
对于第二个问题
p/q不会出线无限不循环小数,这个的证明你可以去网上看看.
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版