已知实数x、y、z,满足3x-2y-4z=-9且x+2y-4z=5,试求出x^2+y^2+z^2的最小值
人气:436 ℃ 时间:2019-12-01 13:57:46
解答
3x-2y-4z=-9x+2y-4z=5联立方程解得:y=0.5x+3.5z=0.5x+0.5所以有:x²+y²+z²=x²+(0.5x+3.5)²+(0.5x+0.5)²=1.5x²+4x+12.5=1.5[x²+8x/3+(4/3)²]-8/3+12.5=1.5(x+4/3)...我按你的方法计算了一下,结果跟你的不一样呢
推荐
- 已知x,y,z为非负实数,p=-3x+y+2z,q=x-2y+4z,x+y+z=1,则点(p,q)的活动范围是
- 实数x,y满足3x^2+2y^2=6x,求x^2+y^2的最小值和最大值.
- x,y,z均是非负实数,且满足 x+3y+2z=3,3x+3y+z=4,求 u=3x-2y+4z 的最大值和最小值
- x,y,z均是非实数均是非实数,且满足:x+3y+2z=3, 3x+3y+z=4,求u=3x-2y+4z的最大值与最小值.
- 已知实数x、y、z满足3x+2y+2z=17,则x^2+y^2+z^2的最小值是( )
- 用why do you learn English 写一篇作文
- 生物亲代与后代之间既有遗传,又有变异,这是什么现象
- 下列英语单词的反义词,
猜你喜欢
- when his mother came in,the boy pretended____(do)his homework
- “曲则全,枉则直,洼则盈,敝则新,少则多,多则惑”如何理解,不仅仅是翻译句子!
- 螺旋测微器的读法
- 设f(x)在[0,1]上是单调递减函数 试证明对于任何q属于[0,1]都有不等式∫q/0 f(x)dx≥q∫1/0f(x)dx 求详解
- (善,齐王有信士若此哉!)文言文翻译
- 甲乙丙合伙做生意甲出的钱是乙丙之和的三分之一,乙出的钱甲丙之和的二分之一.
- 什么是实义动词啊?
- 一根绳子长45米,第一次用去了3/5米,第二次用去了原长的2/5,还剩下多少米?