已知二次函数f(x)=ax2+bx+c(c≠0)(1)若A.B.C,且f(1)=0,证明:f(x)的图象与x轴有2个交点;(2)若常熟x1
x2∈R,且x1,x2,f(x1)≠f(x2),求证:方程f(x)=1/2[f(x1)+f(x2)]必有一根属于(x1,x2)
人气:278 ℃ 时间:2020-04-18 05:34:25
解答
(1)由f(1)=0,可以知道a+b+c=0
而判别式b²-4ac=(a+c)²-4ac=(a-c)²>=0
所以f(x)的图象与x轴有2个交点;
注:要是判别式等于0,说明是有两个相同的交点.
(2)方程f(x)=1/2[f(x1)+f(x2)],变形可以知道
令F(x)=[f(x)-f(x1)]+[f(x)-f(x2)]=0
容易知道F(x1)=[f(x1)-f(x1)]+[f(x1)-f(x2)]=f(x1)-f(x2),
F(x2)=[f(x2)-f(x1)]+[f(x2)-f(x2)]=f(x2)-f(x1),
故F(x1)F(x2)
推荐
- 已知二次函数f(x)=ax2+bx+c (1)若a>b>c且f(1)=0,证明:f(x)的图像与x轴有两个相异的交点
- 已知二次函数f(x)=ax^2+bx+c 1)若a>b>c,且f(1)=0,证明:f(x)的图象与x轴有2个相异交点:
- 已知二次函数f(x)=ax^2+bx+c (1)若a>b>c且f(1)=0,证明:f(x)的图象与x轴有两个相异交点;(2)证明:若对x1,x2且x1-2
- 二次函数f(x)=ax2+bx+c(a>b>c)图象与x轴有两个不同的交点A,B,且f(1)=0①求c/a的范围②证明3/2<|AB|<
- 已知二次函数f(x)=ax2+bx+c(a>0,的图像与x轴有两个不同的交点,若f(x)=0,证明:1/a是函数f(x)的
- 定义在R上的奇函数y=f(x),已知y=f(x)在区间(0,+∞)有3个零点,则函数y=f(x)在R上的零点个数为( ) A.5 B.6 C.7 D.8
- 求救!双氧水和水的鉴别 详细步骤!要求清晰点!
- 把一个四位数先四舍五入到十位,再把所得的数四舍五入到百位,然后再把所得的数四舍五入到千位,↓↓↓
猜你喜欢