计算二重积分∫[1,3]dx∫[x-1,2]e^( y^2) dy
人气:487 ℃ 时间:2020-02-02 23:43:51
解答
∫(x = 1→3) dx ∫(y = x - 1→2) e^(y²) dy
交换积分次序:dydx → dxdy
x = 1 到 x = 3,y = x - 1 到 y = 2 < => y = 0 到 y = 2,x = 1 到 x = y + 1
= ∫(y = 0→2) e^(y²) dy ∫(x = 1→y + 1) dx
= ∫(y = 0→2) e^(y²) * [x] |(x = 1→y + 1) dy
= ∫(y = 0→2) e^(y²) * [(y + 1) - 1] dy
= (1/2)∫(y = 0→2) e^(y²) d(y²)
= (1/2)[e^(y²)] |(y = 0→2)
= (1/2)[e^(2²) - e^(0)]
= (e⁴ - 1)/2
推荐
- 计算二重积分 ∫dy∫e^(-x^2)dx
- 计算二重积分:∫[0,1]dx∫[0,x^½]e^(-y²/2)dy
- 二重积分计算:∫[0,a]dx∫[0,x] f ´(y)/√[(a-x)(x-y)] dy
- 求二重积分∫(0,2)dx∫(x,2)e^(-y^2)dy
- 计算二重积分 ∫(上限是1,下限是0)*dx ∫(上限是2,下限是0)(3-x-y)*dy=?
- 1选A,2选B,我不确定答案,
- Would you like to fly a kite with me?Sorry,I h_______ ever have time for a game
- 取三支干净的小试管,试管A盛有开始蒸馏出的液体,试管B装有蒸馏一段时间后收集的,试管C放入没蒸馏的硬水
猜你喜欢